Груз массой 711 г колеблется на пружине жесткостью 70 Н/м с амплитудой 2,8 см. Определи потенциальную и кинетическую энергию колебаний в тот момент, когда смещение груза равно 1,8 см

Дано:
m=0,711 кг
k=70 Н/м
A=0,028 м
x=0,018 м
Найти: E_n,\;E_k

Уравнение гармонических колебаний груза на пружине:

x(t)=A\sin(wt+\phi_0)            (1)
 
где x(t),\;A,\;w,\;t,\;\phi_0 - соответственно координата колеблющегося груза, амплитуда колебаний, круговая частота колебаний, время, начальная фаза колебаний.  

Поскольку в условии ничего не сказали о начальной фазе, считаем её равной нулю.

x(t)=A\sin(wt)         (2)

Производная от уравнения (1) дает уравнение зависимости скорости груза от времени.

v(t)=Aw\cos(wt)          (3)

Проанализировав уравнение (2) можем прийти к выводу, что максимальное значение скорости 

v_{max}=Aw             (4)

Круговая частота колебаний пружинного маятника:

w=\frac{1}{2\pi}\sqrt{\frac{k}{m}}            (5)

w=\frac{1}{2*3,14}\sqrt{\frac{70}{0,711}}\approx 1,58         (6)

v_{max}=0,028*1,58\approx 0,044 м/с         

x(t)=A\sin(wt)=A\sin(1,58t)               (7)

Чтобы найти скорость в заданный в условии момент, когда смещение равно 1,8 см, надо найти время. 

Подставим значения в уравнение (7)

0,018=0,028\sin(1,58t)              (8)

\sin(1,58t)=\frac{0,018}{0,028}\approx 0,643              (9)

t=\frac{\arcsin{0,643}}{1,58}\approx 0,442\;c             (10)    

Скорость в момент, когда смещение составляет 1,8 см:

v(t)=Aw\cos(wt)=0,028*1,58*\cos(1,58*0,442)\approx 0,034  м/с

Кинетическая энергия:

E_k=\frac{mv^2}{2}=\frac{0,711*0,034^2}{2}\approx 411 мДж

Полная энергия 

E=\frac{mv_{max}^2}{2}=\frac{0,711*0,044^2}{2}\approx 688  мДж

Потенциальная  энергия в момент смещения 1,8 см равна:

E_n=E-E_k=688-411=277 мДж

Ответ: в момент смещения 1,8 см кинетическая энергия груза 411 мДж (миллиджоулей), потенциальная 277 мДж   








Комментарии