Шарик массой 60 г подвешенный на легкой нити длиной 1 м совершает малые колебания относительно положения равновесия, при этом его полная энергия равна 0,02 Дж
Шарик массой 60 г подвешенный на легкой нити длиной 1 м совершает малые колебания относительно положения равновесия, при этом его полная энергия равна 0,02 Дж. В начальный момент времени его смещение от положения равновесия равно 0,13 м. Записать уравнение простого гармонического колебания шарика. Определить максимальное значение возвращающей силы
Дано:
m=0,06\;\text{кг}
L=1\;\text{м}
W=0,02\;\text{Дж}
A=0,13\;\text{м}
Найти: x(t),\;F
Период колебаний (формула Галилея) T=2\pi\sqrt{\frac{L}{g}} (1)
Уравнение колебаний в общем виде x(t)=A\cos{\frac{2\pi t}{T}} (2)
Подставим (1) в (2):
x(t)=A\cos{\frac{2\pi t}{2\pi\sqrt{\frac{L}{g}}}}=A\cos{\sqrt{\frac{gt^2}{L}}} (3)
Подставим значения в искомое уравнение колебаний:
x(t)=0,13*\cos\sqrt{\frac{9,81t^2}{1}} (4)
В окончательном виде уравнение гармонических колебаний нашего шарика принимает вид:
x(t)\approx 0,13*\cos{(3,13t)} (5)
Теперь займемся возвращающей силой:

В нижнем положении сумма силы тяжести и центробежной силы уравновешивается силой натяжения нити.
А в крайнем положении векторная сумма силы натяжения нити и силы тяжести и есть наша максимальная возвращающая сила.
Как видно из рисунка F=mg*\sin a \sin a=\frac{A}{L}
F=\frac{mgA}{L}=\frac{0,06*9,81*0,13}{1}\approx 0,077\;H
Дано:
m=0,06\;\text{кг}
L=1\;\text{м}
W=0,02\;\text{Дж}
A=0,13\;\text{м}
Найти: x(t),\;F
Период колебаний (формула Галилея) T=2\pi\sqrt{\frac{L}{g}} (1)
Уравнение колебаний в общем виде x(t)=A\cos{\frac{2\pi t}{T}} (2)
Подставим (1) в (2):
x(t)=A\cos{\frac{2\pi t}{2\pi\sqrt{\frac{L}{g}}}}=A\cos{\sqrt{\frac{gt^2}{L}}} (3)
Подставим значения в искомое уравнение колебаний:
x(t)=0,13*\cos\sqrt{\frac{9,81t^2}{1}} (4)
В окончательном виде уравнение гармонических колебаний нашего шарика принимает вид:
x(t)\approx 0,13*\cos{(3,13t)} (5)
Теперь займемся возвращающей силой:

А в крайнем положении векторная сумма силы натяжения нити и силы тяжести и есть наша максимальная возвращающая сила.
Как видно из рисунка F=mg*\sin a \sin a=\frac{A}{L}
F=\frac{mgA}{L}=\frac{0,06*9,81*0,13}{1}\approx 0,077\;H
Комментарии
Отправить комментарий
Здесь вы можете оставить ваш комментарий.