Материальная точка, находящаяся на ободе диска радиусом R=80 см вращается согласно уравнению ϕ=30+0,2t+0,01t^3, где ϕ - угол поворота
Материальная точка, находящаяся на ободе диска радиусом R=80 см вращается согласно уравнению ϕ=30+0,2t+0,01t^3, где ϕ - угол поворота. Найти зависимость углового ускорения точки от времени. Найти тангенциальное и нормальное ускорение точки на окружности диска для момента времени t=1 c. Как направлено нормальное ускорение?
w=\frac{d\phi}{dt}=0,2+0,03t^2
\varepsilon=\frac{d^2\phi}{dt^2}
\varepsilon (t)=\frac{d^2(30+0,2t+0,01t^3)}{dt^2}=0,06t
a_{\tau}=\varepsilon R=0,06*1*0,8=0,048\;\text{м/с}^2
a_n=w^2R=(0,2+0,03*1^2)^2*0,8=0,04232\;\text{м/с}^2
Нормальное ускорение направлено перпендикулярно (по нормали) вектору скорости, то-есть вдоль радиуса к центру.
w=\frac{d\phi}{dt}=0,2+0,03t^2
\varepsilon=\frac{d^2\phi}{dt^2}
\varepsilon (t)=\frac{d^2(30+0,2t+0,01t^3)}{dt^2}=0,06t
a_{\tau}=\varepsilon R=0,06*1*0,8=0,048\;\text{м/с}^2
a_n=w^2R=(0,2+0,03*1^2)^2*0,8=0,04232\;\text{м/с}^2
Нормальное ускорение направлено перпендикулярно (по нормали) вектору скорости, то-есть вдоль радиуса к центру.
Комментарии
Отправить комментарий
Здесь вы можете оставить ваш комментарий.