Колесо имеет начальную частоту вращения vo = 5 cек^-1. После торможения частота вращения колеса уменьшилась за время t = 1 мин до значения v= 3 сек^-1. Найдите угловое ускорение колеса Е и число оборотов N, сделанных им за время торможения t, считая что E = const
Угловая скорость w=2\pi \nu
Угловое ускорение
varepsilon=\frac{w-w_0}{t}=\frac{2\pi\nu-2\pi\nu_0}{t}
\varepsilon=\frac{2*3,14*3-2*3,14*5}{60}\approx -0,21 рад/с^2
Число оборотов, сделанных вов время торможения найдем по формуле для равноускоренного вращательного движения:
N=\frac{\phi}{2\pi}=\frac{w_0t+\frac{\varepsilon t^2}{2}}{2\pi}=\frac{2\pi\nu_0t+\frac{\varepsilon t^2}{2}}{2\pi}
N=\frac{2*3,14*5*60-\frac{0,21*60^2}{2}}{2*3,14}\approx 240 оборотов
Комментарии
Отправить комментарий
Здесь вы можете оставить ваш комментарий.