Ускорение свободного падения на Луне 1,6 м/с^2. Каким будет период колебаний математического маятника на Луне, если на Земле он равен 1 с? Зависит ли ответ от массы груза?
Период колебаний математического маятника определяется формулой:
T=2\pi\sqrt{\frac{L}{g}}
где L, g - соответственно длина нити маятника, ускорение свободного падения.
Запишем эту формулу для маятника на Земле с индексами 1, а для маятника на Луне - с индексами 2
T_1=2\pi\sqrt{\frac{L}{g_1}} (1)
T_2=2\pi\sqrt{\frac{L}{g_2}} (2)
Поделим (2) на (1), чтобы выразить во сколько раз изменится период колебаний на Луне по сравнению с Землей:
n=\frac{T_2}{T_1}=\frac{2\pi\sqrt{\frac{L}{g_2}}}{2\pi\sqrt{\frac{L}{g_1}}}=\sqrt{\frac{g_1}{g_2}} (3)
T_2=T_1\sqrt{\frac{g_1}{g_2}} T_2=1*\sqrt{\frac{9,8}{1,6}}\approx 2,47\;c
Комментарии
Отправить комментарий
Здесь вы можете оставить ваш комментарий.