Материальная точка совершает гармонические колебания, при прохождении положения равновесия ее кинетическая энергия равна 2 Дж. Если уменьшить период колебаний в 2 раза, а амплитуду колебаний увеличить в 4 раза, то каким станет максимальное значение кинетической энергии
E_{m1}=\frac{mv_{m1}^2}{2} v_{m1}=A_1w_1 v_{m2}=A_2w_2
w_1=\frac{2\pi}{T_1} w_2=\frac{2\pi}{T_2}
\frac{E_{m1}}{E_{m1}}=\frac{v_{m2}^2}{v_{m1}^2}
E_{m2}=E_{m1}*\frac{v_{m2}^2}{v_{m1}^2}
E_{m2}=E_{m1}*\frac{(A_2*\frac{2\pi}{T_2})^2}{(A_1*\frac{2\pi}{T_1})^2}=E_{m1}*\frac{A_2^2T_1^2}{A_1^2T_2^2}
T_1=2T_2 A_2=4A_1
E_{m2}=64E_{m1}=64*2=128 Дж
Комментарии
Отправить комментарий
Здесь вы можете оставить ваш комментарий.