Амплитуда гармонических колебаний материальной точки, колеблющейся вдоль оси Ox Xm=6 см. В начальный момент времени проекция скорости положительна, а координата точки x(0) =x_0= 3 см. Через какой минимальный промежуток времени координата точки станет x= -3 см, если период колебаний T= 1,2 с?
Уравнение гармонических колебаний материальной точки для данного случая можем записать в виде:
x(t)=x_m\sin(wt+\phi_0)
x(t=0)=0,03 м
0,03=0,06\sin(\frac{2\pi}{T}t+\phi_0)
0,5=\sin(\frac{6,28}{1,2}t+\phi_0)
\phi_0=\frac{\pi}{6}+2\pi n
\phi_0=\frac{5\pi}{6}+2\pi n
При t = 0 тело движется в положительном направлении, поэтому \phi_0 = π/6
Как известно:
w=\frac{2\pi}{T} (2)
Тогда с учетом заданных условий:
x(t)=0,06\sin (\frac{2\pi}{1,2}t+\frac{\pi}{6})
-0,03=0,06\sin (\frac{2\pi}{1,2}t+\frac{\pi}{6})
-0,5=\sin (\frac{2\pi}{1,2}t+\frac{\pi}{6})
\sin (\frac{2\pi}{1,2}t+\frac{\pi}{6})=\arcsin{(-0,5)}
arcsin(-0,5)=\frac{7}{6}\pi
\frac{2\pi}{1,2}t+\frac{\pi}{6}=\frac{7}{6}\pi
2t=1,2
t=0,6 с
Ответ: минимальный промежуток времени, через которій координата точки станет x= -3 см составляет 0,6 секунды.
Комментарии
Отправить комментарий
Здесь вы можете оставить ваш комментарий.