Определите значение запирающего напряжения, если катод, изготовленный из платины, освещенный светом с длиной волны 300 нм. Работа выхода платины равна 5,3 эВ.
Энергия кванта света с длиной волны лямбда:
E=\frac{hc}{\lambda}
где h и с - соответственно постоянная Планка и скорость света.
Получив эту энергию кванта света, электрон за счет нее совершает работу выхода, а все что осталось сообщает ему кинетическую энергию:
K=E-A=\frac{hc}{\lambda}-A
Запирающее напряжение создает тормозящее поле, направленное против скорости электрона, работа (она равна энергии) по торможению Q:
Q=eU
где е - заряд электрона, U - напряжение
U=\frac{Q}{e}
Согласно условию, если запирающее напряжение, то Q=K, тогда:
U=\frac{\frac{hc}{\lambda}-A}{e} (1)
Энергия, которую получит электрон от фотона:
E=\frac{hc}{\lambda}=\frac{6,626*10^{-34}*3*10^8}{300*10^{-9}}=6.626*10^{-19}\;\text{Дж}
Работа выхода 5,3\; эВ=8,0109*10^{-19} Дж
Как видим, энергия, полученная электроном от фотона света, меньше работы выхода. А это значит, что электрон не сможет выйти из металла. Тока и так не будет. Следовательно никакого запирающего напряжения не надо.
Если бы фотон света обладал бы энергией большей работы выхода электрона ( а для этого фотон должен иметь более короткую длину волны), то мы смогли бы вычислить запирающее напряжение по формуле (1)
Комментарии
Отправить комментарий
Здесь вы можете оставить ваш комментарий.