Запишите уравнение гармонических колебаний для тела у которого амплитуда 5 см, начальная фаза колебаний 0, период колебаний 0,010 с. Определите частоту колебаний, циклическую частоту, амплитуду скорости и ускорения, полую энергию гармонических колебаний, если масса тела 100 г.

Уравнение гармонического колебания устанавливает зависимость координаты тела от времени

x(t)=A\sin(wt+\phi_0)

где x(t),\;A,\;w,\;t,\;\phi_0  -  соответственно координата колеблющегося тела, амплитуда колебаний, угловая частота колебаний, начальная фаза.

w=2\pi f=\frac{2\pi}{T}
   
где f, T - соответственно частота  и период колебаний.

Тогда искомое уравнение гармонических колебаний можно записать в таком виде:

x(t)=0,05\sin\frac{2\pi t}{0,01}=0,05\sin(200\pi t)   

Частота колебаний:  f=\frac{1}{T}=\frac{1}{0,01}=100  Гц

Циклическая частота: w=2\pi f=2*3,14*100=628 рад/с

Чтобы выразить скорость v продифференцируем уравнение гармонических колебаний по времени,  а вторая производная даст нам ускорение:

v=Aw\cos(wt+\phi_0)

a=-Aw^2\sin(wt+\phi_0)

Имеем амплитуду скорости:             v_{max}=Aw=0,05*628=31,4  м/с

Амплитуда ускорения:      a_{max}=Aw^2=0,05*628^2=19719,2  \text{м/с}^2

В момент максимальной скорости кинетическая энергия равна  полной энергии:

W=\frac{mv^2}{2}=\frac{0,1*31,4^2}{2}=49,3  Дж



Комментарии