Определить тангенциальное и нормальное ускорения, а также радиус кривизны траектории в зависимости от времени, если модуль скорости тела изменяется во времени по закону V= At+B, где A>0 и B>0, А и В - постоянные. Модуль ускорения а = 3 A.

Ускорение - величина векторная, т.е. имеющая и направление и собственно величину т.е модуль. Для удобства анализа вектор ускорения (далее встречается как полное ускорение) представляют в виде суммы векторов, направления которых взаимно перпендикулярны - тангенциального ускорения (направлено по касательной к траектории в данной точке) и нормального (оно же - центростремительное, направлено перпендикулярно тангенциальному к центру кривизны траектории)

Тангенциальное ускорение определяется, как производная скорости. В нашем случае производная от функции скорости во времени:

a_{tau}=\frac{dv}{dt}=\frac{d(At+B)}{dt}=A 

Модуль полного ускорения - это по сути гипотенуза прямоугольного треугольника, катетами которого являются тангенциальное и нормальное ускорения.

 Можем записать:        \sqrt{a_{tau}^2+a_n^2}=a         

\sqrt{A^2+a_n^2}=3A            a_n=A\sqrt{8}
Как известно, центростремительное ускорение определяется формулой   a_n=\frac{v^2}{R}

A\sqrt{8}=\frac{v^2}{R}           

С учетом заданного в условии из последнего равенства следует:

R=\frac{(At+B)^2}{A\sqrt{8}}

Комментарии