Материальная точка массой 0,1 кг движется по окружности радиусом R=0,25 м. Её угловая скорость зависит от времени согласно уравнению: w=2+0,5t^2. Определить для момента времени t = 4 с силу, действующую по касательной к траектории; нормальное, тангенциальное и полное ускорения точки; кинетическую энергию
Определим угловую скорость в момент времени t = 4 c :
Тогда линейная скорость (скорость, направленная по касательной к траектории):
Связь тангенциального ускорения аt и углового ускорения \varepsilon:
w=2+0,5t^2=2+0,5*4^2=10 рад/с
Тогда линейная скорость (скорость, направленная по касательной к траектории):
v=wR=10*0,25=2,5 м/с
Нормальное ускорение (ускорение направленное вдоль радиуса к центру или центростремительное):
a_n=\frac{v^2}{R}=\frac{2,5^2}{0,25}=25\;\text{м/с}^2
Угловое ускорение – производная от угловой скорости по времени :
\varepsilon=\frac{dw}{dt}=\frac{d(2+0,5t^2)}{dt}=0+0,5*2t=t\;\text{рад/с}^2
Для момента времени t = 4 c угловое ускорение \varepsilon=4\;\text{рад/с}^2
$а_{\tau}= \varepsilon*R
a_{\tau}=4*0,25=1\;\text{м/с}^2$
Тангенциальное и нормальное ускорения направлены перпендикулярно друг другу и представляют собой катеты прямоугольного треугольника, гипотенузой которого является полное ускорение. Вот его то мы и найдем, воспользовавшись услугами Пифагора:
$a=\sqrt{a_n^2+a_{\tau}^2}=\sqrt{25^2+1^2=25,02\;\text{м/с}^2}
Чтобы определить силу, действующую по направлению касательной траектории, воспользуемся вторым законом Ньютона:
F=ma_{\tau}=0,1*1=0,1\;H
Кинетическая энергия:
E=\frac{mv^2}{2}=\frac{0,1*2,5^2}{2}=0,3125 Дж
Комментарии
Отправить комментарий
Здесь вы можете оставить ваш комментарий.