На тело массой m действует сила F. Установить зависимость кинитеческой енергии тела от времени, если t=0 ,v (начальная скорость)=0

Кинетическая энергия определяется формулой:

$K=\frac{mv^2}{2}$        (1)

Если на тело постоянно действует сила, то оно движется равноускоренно и скорость в любой момент времени определяется формулой:

$v=v_0+at$          
 В нашем случае:
$v=at$                 (2)

Для определения ускорения воспользуемся вторым законом Ньютона:

$a=\frac{F}{m}$               (3)

Если подставить (3) в (2):
$v=\frac{Ft}{m}$             (4)

Подставив (4) в (1) находим искомую зависимость кинетической энергии от времени:

$K=\frac{mv^2}{2}=\frac{mF^2t^2}{2m^2}=\frac{F^2t^2}{2m}$

Комментарии