Бассейн площадью S, заполненный водой до уровня h, разделен пополам вертикальной перегородкой. Перегородку медленно передвигают в горизонтальном направлении так, что она делит бассейн в отношении 1:3. Какую для этого нужно совершить работу?
Надо догадаться, что в условии задачи забыли написать, что перегородка воду не пропускает и вода через край бассейна и перегородки не перетекает.
Для удобства обратимся к рисунку. Разделим бассейн на 4 равных части. Площадь каждой из них равна S/4. Тогда ясно, что перемещение перегородки вправо от середины на четверть длины и даст соотношение правой и левой площади 1:3.
Такое перемещение перегородки приведет к повышению уровня воды в правой части и понижению в левой. Мы как будто взяли массу воды из одной (третьей по счету) четверти бассейна и поместили ее над правой четвертью, тем самым придав этой массе потенциальную энергию.
На сколько же увеличится уровень в правой части? Раз площади третьей и четвертой частей одинаковы, то уровень увеличится на высоту h. Таким образом, H=2h.
В левой части уровень уменьшится. Объем воды останется прежним. Выразим объем до и после через площадь и высоту, приравняем и найдем новую высоту (уровень).
Отсюда следует, что: A=E-E_L
A=\frac{\rho Sgh^2}{4}-\frac{\rho Sgh^2}{12}=\frac{\rho Sgh^2}{6}
Для удобства обратимся к рисунку. Разделим бассейн на 4 равных части. Площадь каждой из них равна S/4. Тогда ясно, что перемещение перегородки вправо от середины на четверть длины и даст соотношение правой и левой площади 1:3.
Такое перемещение перегородки приведет к повышению уровня воды в правой части и понижению в левой. Мы как будто взяли массу воды из одной (третьей по счету) четверти бассейна и поместили ее над правой четвертью, тем самым придав этой массе потенциальную энергию.
На сколько же увеличится уровень в правой части? Раз площади третьей и четвертой частей одинаковы, то уровень увеличится на высоту h. Таким образом, H=2h.
В левой части уровень уменьшится. Объем воды останется прежним. Выразим объем до и после через площадь и высоту, приравняем и найдем новую высоту (уровень).
V_1=\frac{2Sh}{4}
V_2=\frac{3Sh_2}{4}
V_2=\frac{3Sh_2}{4}
V-1=_2
\frac{2Sh}{4}=\frac{3Sh_2}{4}
h_2=\frac{2h}{3}
Потенциальная энергия справа увеличилась на величину:
E=\frac{\rho Shgh}{4}=\frac{\rho Sgh^2}{4}
E=\frac{\rho Shgh}{4}=\frac{\rho Sgh^2}{4}
где р - удельная плотность воды, то есть pSh/4 равно массе воды.
Потенциальная энергия слева уменьшилась на величину:
E_L=\frac{Sh\rho gh}{4*3}=\frac{\rho Sgh^2}{12}
E_L=\frac{Sh\rho gh}{4*3}=\frac{\rho Sgh^2}{12}
Сделаем два важных замечания:
- Работа равна изменению энергии;
- Для нашей системы справедлив закон сохранения энергии.
Отсюда следует, что: A=E-E_L
где А - работа.
A=\frac{\rho Sgh^2}{4}-\frac{\rho Sgh^2}{12}=\frac{\rho Sgh^2}{6}
.
ОтветитьУдалитьНепонятно где пишут формулу потенциальной энергии. Как ее вывели?
ОтветитьУдалить